
MMME 3085 Jan 23 Example Exam Solutions 

Question 1: 

# include <stdio.h> 

# include <stdlib.h> 

# include <math.h> 

 

int main() 

{ 

    float num; 

    float tol = 0.0;  // Specify tolerance for iterative process 

    float root = 0; 

    float nextRoot = 100;  // Initialise to a value which will execute loop at least 

once 

    int iterations = 0; 

 

    printf("Input a value to calculate the square root: "); 

    scanf("%f", &num); 

 

    // Abort program if negative number input 

    if ( num < 0.0 ) 

    { 

        printf( "Cannot calculate the square root of a negative number, aborting 

program\n"); 

        exit(0); 

    } 

 

    tol = num * 0.00001 * 0.01;  // Convergence when within 0.00001 % of original 

number 

 

    // Initial guess at the root 

    root = num/2.0; 

 

    // Execute until results are within tolerance 

    while ( (fabs(nextRoot - root) > tol)) 

    { 

        root = nextRoot;  

        nextRoot = 0.5* (root + num/root); 

        iterations++; 

    } 

 

    // Output the result 

    printf( "The square root of %10.5f is %10.5f\n", num, nextRoot); 

    printf("Number of iterations = %d", iterations); 

} 

 

  



Question 2: 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

 

int calcPolygonArea( int Sides, float length, float *area); 

 

int main() 

{ 

    int numSides = 0; 

    float length = 0.0; 

    float polygonArea = 0.0; 

 

    // Input number and length of sides of polygon 

    printf( "Input number of sides in polygon: "); 

    scanf("%d", &numSides); 

    printf( "Input length of polygon side: "); 

    scanf("%f", &length); 

 

    // Calculate area of polygon 

    if ( calcPolygonArea( numSides, length, &polygonArea) ) 

        printf( "Area of polygon with %d sides of length %6.2fm is %6.2fm^2\n", 

numSides, length, polygonArea); 

    else 

        printf("Cannot calculate area, invalid input\n"); 

     

    return 0; 

} 

 

int calcPolygonArea( int Sides, float length, float *area) 

{ 

    // Check for valid input and return if invalid 

    if ( Sides < 3 || length <= 0.0) 

        return 0; 

    // Calculate area of polygon 

    *area = (length*length*(float)Sides)/ (4*tan(M_PI/Sides)); 

    return 1; 

} 

  



Question 3: 

#include <stdio.h> 

#include <stdlib.h> 

 

int main() 

{ 

    FILE *fIn; 

    char filename[50]; 

    int format; 

    char c; 

 

    // Input filename and open file 

    printf("Enter the name of the input file: "); 

    scanf("%s", filename); 

 

    if ( (fIn = fopen(filename, "r")) == NULL) 

    { 

        printf("Failed to open input file, terminating program\n"); 

        exit(0); 

    } 

 

    // Select output format 

    printf( "Enter format for output (1-3): "); 

    scanf("%d", &format); 

 

    // Terminate program if incorrect format 

    if ( format != 1 && format != 2 && format !=3) 

    { 

        printf("Incorrect format, terminating program\n"); 

        fclose(fIn); 

        exit(0); 

    } 

 

    // Loop until reach EOF 

    while ( !feof(fIn) ) 

    { 

        // Read a single character 

        c = fgetc(fIn); 

 

        // Output depending on format selected 

        switch(format) 

        { 

            case 1: 

                printf("Character read was %c\n", c); 

                break; 

            case 2: 

                printf("Ascii value of character is %d\n", c); 

                break; 



            case 3: 

                printf("Ascii value of %c is %d\n", c,c ); 

                break; 

            default: 

                printf("Couldn't print character\n"); 

                break; 

        } 

    } 

 

    // Close the file 

    fclose(fIn); 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Question 4: 

A. 

i) Linear encoder 

1. Most likely is a linear encoder (e.g., moire-based grating system). [1 

mark] 

2. Signal is a quadrature signal. [1 mark] 

3. Needs some form of quadrature decoder to interpret the signal. [2 

marks] 

4. To avoid any interference, use differential signals e.g., produced by a 

“line driver”. [1 mark] 

ii)  A temperature sensor (thermocouple)  

1. The temperature range is such that a thermocouple is needed. [1 mark] 

2. Analogue signal in the range of millivoltages. [1 mark] 

3.  Cold junction compensation and software to interpret voltage as a 

temperature using the thermocouple tables/polynomials as well as ADC 

(or use the built in one). [2 marks] 

4. A sensitive amplifier is needed. [1 mark] 

iii) Strain gauge  

1. A strain gauge can be used to convert the strain into force. [1 mark] 

2. Analogue signal in the range of millivoltages. [1 mark] 

3. The strain gauge changes the stain into electrical resistance change. 

Using a Wheatstone’s bridge, it can be then converted into a voltage 

change. Then an amplifier is used to scale up the signal. An ADC will be 

required to interface with a microprocessor (or use the built in one). [2 

marks] 

4. A low-pass filter to eliminate unwanted noise frequencies. [1 mark] 

 

B.  

Output is connected to an external voltage supply via a pull-up resistor 

and is either pulled up to that voltage (if transistor does not conduct) or is 

shorted to ground (if transistor conducts) as shown in the figure below: 

 

[2 marks] 

 

 
[2 marks] 

 

Used to obtain logic output voltage not limited to (say) 5V as for a normal 

(totem pole) output and to work as isolator between the control and 

power circuits.  

[1 mark] 



C. 

Solution: use three-state (tri-state) buffer, has the states: 

• high 

• low 

• High impedance (i.e., open circuit) 

[2 marks] 

When enabled:  

• if input is high, puts high signal onto bus 

• if input is low, puts low signal onto bus 

 

When disabled: Connection to bus is broken ("high impedance state") 

like an open switch 

 

Enable/disable depends upon whether 

• The address on the address bus corresponds to the address 

identifying the interface 

• Whether the data at the address is to be read or written (status of 

read/write line) 

[2 marks] 

 

 

 

 

 

 

[2 marks]  

 

Question 5: 

A. 

Students are not expected to identify registers but are expected to know the 

following: 

• counter register (e.g., TCNTn) cycles from zero to maximum value then 

wraps back to zero. 

• Output is set to 1 at each cycle start (i.e., TCNTn reaches max) and reset 

to 0 when a threshold is reached (i.e., TCNTn= a threshold (e.g., the 

value in OCRnA)). 

Full marks for conveying concept of how varying value sets and resets output, 

with diagram (as below) with labels which support concept. 

[6 marks] 

 



 
[5 marks] 

Note: this is the version of PWM on Arduino taught in class, it is actually “fast 

PWM”. 

 

B. 

The connection is as follows: 

 

 
Note: The student is not supposed to identify particular pins (as long as they are digital 

output).  

 

[6 marks] 

 

C. 

• A large number of comparators is used as in the below figure (1 per 

increment) 

• Each one compares input with reference (Vref is divided using the resistors) 

• Priority encoder converts the output from the comparators into a binary 

number  

[3 marks] 



 

[4 marks] 

 

 


